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A Chi-Squared Case Study

In this bonus chapter, we’ll work through a case study that performs some statistical

analysis of a dataset to determine if the data reveals anything potentially significant.

We’ll look at a common statistical decision. The decision is described in detail at http:

//www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm.

Background
We’ll use the 𝜒 2, chi-squared, test to see whether or not data is distributed randomly.

To make this decision, we’ll need to compute an expected distribution and compare the

observed data to our expectations. A significant difference means there’s something

that needs further investigation. An insignificant difference means we can use the null

hypothesis that there’s nothing more to study: the differences are simply random variation.

We’ll start with some backstory—some details that are not part of the case study, but often

feature in an exploratory data analysis (EDA) application. We need to gather the raw

data and produce a useful summary that we can analyze.

http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm
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The data comes from quality assurance checks while producing silicon wafers. The defect

data is collected in a database. We may use SQL queries to extract defect details for further

analysis. For example, a query could look like this:

SELECT SHIFT, DEFECT_CODE, SERIAL_NUMBER FROM some_tables;

The output from this query could be a .csv file with individual defect details:

shift,defect_code,serial_number
1,None,12345
1,None,12346
1,A,12347
1,B,12348

The actual data includes thousands of wafers.

There are three operating shifts and four defect codes spread around the collection of

samples. Most wafers are defect-free. The goal is to find any pattern to the defects; this

can help engineers locate the root cause.

We need to summarize the preceding data. We may summarize at the SQL query level using

the COUNT and GROUP BY statements. We may also summarize at the Python-application

level. While a pure database summary is often described as being more efficient, this isn’t

always true. In some cases, using a Python application to summarize a simple extract of

raw data can be faster than a summary created by a database server. If performance is

important, both alternatives must be measured, rather than hoping that the database is the

fastest.

The goal is to create summary data with three attributes:

• The shift

• The type of defect

• A count of defects observed

The summary data needs to look like this:
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shift,defect_code,count
1,A,15
2,A,26
3,A,33

The actual data will show all of the 12 combinations of three shifts and four defect types.

In the next section, we’ll focus on reading the raw data to create summaries. This is the

kind of context in which Python is particularly powerful: working with raw source data.

Once we have summaries, we need to compare the observed shift and defect counts with

an expected value. If the difference between observed counts and expected counts can

be attributed to random fluctuation, we have to accept the null hypothesis that nothing

interesting is going wrong. If, on the other hand, the numbers don’t fit with random

variation, then we have a problem that requires further investigation.

Filtering and reducing the raw data with a
Counter object
We’ll represent the essential defect counts as a collections.Counter parameter. We will

build counts of defects by shift and defect type from the detailed raw data. Here’s the code

that reads some raw data from a .csv file:

from typing import TextIO, NamedTuple, TypeAlias
import csv
from collections import Counter

class Defect(NamedTuple):
shift: str # domain is '1', '2', '3'
defect_type: str # domain is 'A', 'B', 'C', 'D'
serial_number: str

Shift_Type: TypeAlias = tuple[str, str]
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def defect_reduce(input_file: TextIO) -> Counter[Shift_Type]:
rdr = csv.DictReader(input_file)
defect_iter = (Defect(**row) for row in rdr)
shift_type_iter = (

(row.shift, row.defect_type)
for row in defect_iter if row.defect_type)

tally = Counter(shift_type_iter)
return tally

The defect_reduce() function will create a dictionary reader based on an open file pro-

vided through the input parameter. Each row of input creates an instance of the Defect

named tuple. Because the column names in the file are valid Python variable names, it’s easy

to transform the dictionary into a named tuple object. This allows us to use slightly simpler

syntax to refer to items within the row. Specifically, the next generator expression uses

references such as row.shift and row.defect_type instead of the slightly more wordy

row['shift'] or row['defect_type'] references.

We can use a more complex generator expression to do a map-filter combination. We’ll

filter each row to ignore rows with no defect code. For rows with a defect code, we’re

mapping an expression that creates a two-tuple from the row.shift and row.defect_type

references.

In some applications, the filter won’t be a trivial expression such as row.defect_type. It

may be necessary to write a more sophisticated condition. In this case, it may be helpful to

use the filter() function to apply the complex condition to the generator expression that

provides the data.

Given a generator that will produce a sequence of (shift, defect_type) tuples, we can

summarize them by creating a Counter object from the generator expression. Creating this

Counter object will process the lazy generator expressions, which will read the source file,

extract fields from the rows, filter the rows, and summarize the counts.
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We’ve provided a qa_data.csv file in the repository of code for this book.

We’ll use the defect_reduce() function to gather and summarize the data as follows:

>>> from pathlib import Path

>>> source_path = Path.cwd() / "qa_data.csv"
>>> with source_path.open() as input:
... defect_counts = defect_reduce(input)

We can open the file, gather the defects, and display them to be sure that we’ve properly

summarized by shift and defect type. Since the result is a Counter object, we can combine

it with other Counter objects if we have other sources of data.

The defect summary counts look like this:

>>> from pprint import pprint

>>> pprint(defect_counts)
Counter({('3', 'C'): 49,

('1', 'C'): 45,
('2', 'C'): 34,
('3', 'A'): 33,
('2', 'B'): 31,
('2', 'A'): 26,
('1', 'B'): 21,
('3', 'D'): 20,
('3', 'B'): 17,
('1', 'A'): 15,
('1', 'D'): 13,
('2', 'D'): 5})

We have defect counts organized by shift ('1', '2', or '3') and defect types ('A' through

'D'). Using alternative inputs of summarized data is left as an exercise for the reader. This
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reflects a common use case where data is available at the summary level.

Once we’ve read the data, the next step is to develop two probabilities so that we can

properly compute expected defects for each shift and each type of defect. We don’t want to

divide the total defect count by 12, since that doesn’t reflect the actual deviations by shift

or defect type. The shifts may be more or less equally productive. The defect frequencies

are certainly not going to be similar; we expect some defects to be very rare and others to

be more common.

Computing sums with a Counter object
We need to compute the probabilities of defects by shift and defects by type. To compute

the expected probabilities, we need to start with some simple sums. The first is the overall

sum of all defects, which can be calculated by executing the following command:

>>> total = sum(defect_counts.values())
>>> total
309

This is done directly from the values in the Counter or dictionary object assigned to the

defect_counts variable. This will show that there are 309 total defects in the sample set.

We need to get defects by shift as well as defects by type. This means that we’ll extract two

kinds of subsets from the raw defect data. The by-shift extract will use just one part of the

(shift, defect_type) key in the Counter object. The by-type extract will use the other

half of the key pair.

This suggests a higher-order function to summarize a Counter object with a multi-part

key by a subset of the key. We’re summarizing the original multi-dimensional grouping to

use fewer dimensions. This function can apply a filter to each key to extract the relevant

subset. Here’s a function definition we can use for this:
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from collections.abc import Callable
from typing import TypeAlias

ShiftDefect: TypeAlias = tuple[str, str]
SourceCounter: TypeAlias = Counter[ShiftDefect]

def summarize_by(
subset_key: Callable[[ShiftDefect], str],
source: SourceCounter

) -> Counter[str]:
grouped_iter = (

Counter({subset_key(k): v})
for k, v in source.items()

)
return sum(

grouped_iter,
Counter()

)

We summarize the initial Counter object by creating and summing additional Counter

objects. Each is extracted from the initial set of the Counter objects assigned to the

defect_counts variable.

We can’t use the default initial value of 0 for the sum() function. We must

provide an empty Counter() object as an initial value.

Here are the by-shift and by-defect-type summaries:

>>> shift_totals = summarize_by(lambda s_d: s_d[0], defect_counts)
>>> type_totals = summarize_by(lambda s_d: s_d[1], defect_counts)

The shift summary totals look like this:
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>>> shift_totals
Counter({'3': 119, '2': 96, '1': 94})

The defect type summaries look like this:

>>> type_totals
Counter({'C': 128, 'A': 74, 'B': 69, 'D': 38})

We’ve kept the summaries as Counter objects, rather than creating simple dict objects

or possibly even list instances. We’ll generally use them as simple dicts from this point

forward.

Computing probabilities from Counter objects
We’ve read the data and computed summaries in two separate steps. In some cases, we may

want to create the summaries while reading the initial data. This is an optimization that

may save a little bit of processing time. We could write a more complex input reduction

that emitted the grand total, the shift totals, and the defect type totals. These Counter

objects would be built one item at a time.

We’ve focused on using the Counter instances, because they seem to allow us flexibility.

Any changes to the data acquisition will still create Counter instances and won’t change

the subsequent analysis.

The probability of a defect—by shift or by defect type—is the observed count of defects

out of the total population of defects. This is a fraction, and it’s often helpful to work

with fractional values as Python Fraction objects to keep as much precision as possible.

Converting to float values can introduce small errors because of the way float values can

involve truncation.

As with the summaries, we have a common function with two small variants. One will

summarize the defects by shift, the other by defect type. This will regroup the overall

defect counts from a two-dimensional value—shift and defect type—to two separate one-
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dimensional values.

This is often presented in a tabular form with summaries at the end of the rows or below

each column. We’ll define a reusable function that can produce either row or column totals.

Here’s how we can compute the probabilities of defect by shift and by defect type:

from fractions import Fraction

def probability_by(
subset_key: Callable[[ShiftDefect], str],
source: SourceCounter

) -> dict[str, Fraction]:
total = sum(source.values())
sub_totals = summarize_by(subset_key, source)
return {

k: Fraction(sub_totals[k], total)
for k in sub_totals

}

This probability_by() function uses the summarize_by() function to compute a subtotal

by shift or by defect type. It then computes fractional values for each dimension’s individual

contribution to the overall total. Because these are fractions, the total will always be

calculated correctly without the possible truncation problems associated with float values.

This could be restated as a composition of two functions. Instead of directly evaluating the

summarize_by() function, this could work with the results of the summarize_by() function.

We’ve left the alternative design as an exercise for the reader.

The following example shows how we use these functions to produce the summary frac-

tions:

>>> P_shift = probability_by(lambda s_d: s_d[0], defect_counts)
>>> P_type = probability_by(lambda s_d: s_d[1], defect_counts)

We’ve created two mappings: P_shift and P_type. The P_shift dictionary maps a shift

to a Fraction object, showing the shift’s contribution to the overall number of defects.
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Similarly, the P_type dictionary maps a defect type to a Fraction object, showing the

defect type’s contribution to the overall number of defects.

We’ve elected to use Fraction objects to preserve all of the precision of the input values.

When working with counts like this, we may get probability values that make more intuitive

sense to people reviewing the data.

The P_shift and P_type data looks like this:

>>> from pprint import pprint

>>> pprint(P_shift, width=64)
{'1': Fraction(94, 309),
'2': Fraction(32, 103),
'3': Fraction(119, 309)}

>>> pprint(P_type, width=64)
{'A': Fraction(74, 309),
'B': Fraction(23, 103),
'C': Fraction(128, 309),
'D': Fraction(38, 309)}

A value such as 32/103 or 96/309 does not suffer from float truncation. Fractions may also

be more meaningful to some people than decimal values like 0.3106. We can easily get

float values from Fraction objects, as we’ll see later.

The shifts all seem to be approximately at the same level of defect production. The defect

types vary, which seems typical. It appears that the defect C is a relatively common problem,

whereas the defect D is much less common. Perhaps the second defect requires a more

complex situation to arise in the manufacturing process.
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Computing expected values and displaying a
contingency table
The expected defect production is a combined probability. We’ll compute the shift defect

probability multiplied by the probability based on defect type. This will allow us to compute

all 12 probabilities from all combinations of shift and defect type. We can weight these

with the observed numbers and compute the detailed expectation for defects.

The following code calculates expected values:

def expected(source: SourceCounter) -> dict[ShiftDefect, Fraction]:
total = sum(source.values())
P_shift = probability_by(lambda s_d: s_d[0], source)
P_type = probability_by(lambda s_d: s_d[1], source)
return {

(s, t): P_shift[s] * P_type[t] * total
for t in sorted(P_type)

for s in sorted(P_shift)
}

The expected() function creates a dictionary that parallels the initial defect_counts object.

This dictionary will have a sequence of two-tuples with keys and values. The keys will be

two-tuples of shift and defect type. This dictionary is built from a generator expression that

explicitly enumerates all combinations of keys from the P_shift and P_type dictionaries.

The value of the expected dictionary looks like this:

>>> from pprint import pprint

>>> pprint(expected(defect_counts))
{('1', 'A'): Fraction(6956, 309),
('1', 'B'): Fraction(2162, 103),
('1', 'C'): Fraction(12032, 309),
('1', 'D'): Fraction(3572, 309),
('2', 'A'): Fraction(2368, 103),
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('2', 'B'): Fraction(2208, 103),
('2', 'C'): Fraction(4096, 103),
('2', 'D'): Fraction(1216, 103),
('3', 'A'): Fraction(8806, 309),
('3', 'B'): Fraction(2737, 103),
('3', 'C'): Fraction(15232, 309),
('3', 'D'): Fraction(4522, 309)}

Each item of the mapping has a key with both a shift number and a defect type code. Each

key is associated with a Fraction value showing the probability of a defect based on shift

time and defect type multiplied by the overall number of defects. Some of the fractions are

simplified; for example, a value of 6624/309 was simplified to 2208/103.

Large numbers are awkward when displayed as proper fractions. Displaying large numbers

as float values is often easier. Small values (such as probabilities) are sometimes easier to

understand as fractions.

We’ll print the observed and expected times in pairs. This will help us visualize the data.

We’ll create a contingency table to help summarize what we’ve observed and what we

expect.

We can use the rich package to incorporate rules to make the table easier to read. The

following function displays the relevant table:

from rich.table import Table
from rich.console import Console

def contingency_table(expected: dict[ShiftDefect, Fraction],
defect_counts: Counter[ShiftDefect]) -> None:

total = sum(defect_counts.values())
shift_totals = summarize_by(lambda s_d: s_d[0], defect_counts)
type_totals = summarize_by(lambda s_d: s_d[1], defect_counts)

table = Table(title="Contingency Table")
table.add_column("shift")
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for defect_type in sorted(type_totals):
table.add_column(f"{defect_type} obs")
table.add_column(f"{defect_type} exp")

table.add_column("total")

for s in sorted(shift_totals):
row = [f"{s}"]
for t in sorted(type_totals):

row.append(f"{defect_counts[s,t]:3d}")
row.append(f"{float(expected[s,t]):5.2f}")

row.append(f"{shift_totals[s]:3d}")
table.add_row(*row)

footers = ["total"]
for t in sorted(type_totals):

footers.append(f"{type_totals[t]:3d}")
footers.append("")

footers.append(f"{total:3d}")
table.add_row(*footers)

console = Console()
console.print(table)

The output can be a bit too wide to typeset well. The following example should suggest

the content of the table:

>>> contingency_table(expected(defect_counts), defect_counts)
Contingency Table

shift A obs A exp B obs B exp C obs C exp D obs D exp tot.

1 15 22.51 21 20.99 45 38.94 13 11.56 94
2 26 22.99 31 21.44 34 39.77 5 11.81 96
3 33 28.50 17 26.57 49 49.29 20 14.63 119
total 74 69 128 38 309

This shows 12 pairs of cells. Each pair has the observed number of defects and an expected

number of defects. Each row is for a shift, and ends with the shift totals. Each pair of
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columns is for a defect type, and has a footer with the defect totals.

In some cases, we might export this summarized data in CSV notation and build a spread-

sheet. In other cases, we may build a Markdown or HTML version of the contingency table

for publication. For more information on Markdown, see https://www.markdownguide.

org/.

A contingency table such as this one can clarify the comparison between observed and

expected values. From this, a chi-squared test can help decide if the observed values match

the expected values. This will help us decide whether the data is random or whether there’s

something that deserves further investigation.

Computing the chi-squared value
The 𝜒 2 value is based on ∑𝑖

(𝑒𝑖−𝑜𝑖 )2
𝑒𝑖 , where the 𝑒𝑖 values are the expected values and the 𝑜𝑖

values are the observed values. In our case, we have two dimensions, shift, 𝑠, and defect

type, 𝑡 , which leads to the following computation:

𝜒 2 = ∑
𝑠
∑
𝑡

(𝑒𝑠𝑡 − 𝑜𝑠𝑡 )2

𝑒𝑠𝑡

We can compute the specified formula’s value as follows:

def chi2(defect_counts: Counter[ShiftDefect]) -> Fraction:
total = sum(defect_counts.values())
shift_totals = summarize_by(lambda s_d: s_d[0], defect_counts)
type_totals = summarize_by(lambda s_d: s_d[1], defect_counts)

expected_counts = expected(defect_counts)

diff_sq_e: Callable[[Fraction, int], Fraction] = (
lambda e, o: (e - o) ** 2 / e

)

chi2 = sum(
diff_sq_e(expected_counts[s, t], defect_counts[s, t])

https://www.markdownguide.org/
https://www.markdownguide.org/
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for s in shift_totals
for t in type_totals

)
return Fraction(chi2) # convert any int result to Fraction

We’ve defined a small lambda, diff_sq_e, to help us optimize the calculation. This allows

us to execute the expected_counts[s,t] and defect_counts[s,t] attributes just once,

even though the expected value is used in two places.

Here’s how this chi2 function works to compute a 𝜒 2 value for our defect count data. We

can compute a float value or a fraction value:

>>> round(float(chi2(defect_counts)), 2)
19.18
>>> chi2(defect_counts).limit_denominator(20)
Fraction(326, 17)

For this dataset, the final 𝜒 2 value is 19.18. There are a total of six degrees of freedom

based on three shifts and four defect types. A chi-squared table shows us that any value

below 12.5916 would suggest 1 chance in 20 of the data being truly random. Since our

value is 19.18, the data is unlikely to be random. Something is wrong that warrants deeper

investigation.

Online chi-squared tables include this one from the US National Institute

of Standards and Technology (NIST): https://www.itl.nist.gov/div89

8/handbook/eda/section3/eda3674.htm.

The cumulative distribution function shows that a value of 19.18 has a probability of the

order of 0.00387: about 4 chances in 1,000 of being random. The next step in the overall

analysis is to design a follow-up study to discover the details of the various defect types

and shifts. We’ll need to see which independent variable has the biggest correlation with

defects and continue the analysis. This work is justified because the 𝜒 2 value indicates that

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
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the effect is not simple random variation.

Summary
In the case study presented in this chapter, we looked at the advantage of using Python for

exploratory data analysis—the initial data acquisition including a little bit of parsing and

filtering. In some cases, a significant amount of effort is required to normalize data from

various sources. This is a task at which Python excels.

The calculation of an 𝜒 2 value involved three intermediate sum() functions: two from

generator expressions, and a final generator expression to create a dictionary with expected

values. After these three, a final sum() function created the statistic. In under a dozen

expressions, we created a sophisticated analysis of data that will help us accept or reject

the null hypothesis.

Using a functional approach, we can write succinct and expressive programs that accomplish

a great deal of processing. Python isn’t a properly functional programming language. For

example, we’re required to use some imperative programming techniques. This limitation

forces us away from purely functional recursions. We gain some performance advantage,

since we’re forced to optimize tail recursions into explicit loops.

We saw numerous advantages of adopting Python’s hybrid style of functional programming.

In particular, Python’s higher-order functions and generator expressions give us a number

of ways to write high-performance programs that are often quite clear and simple.

Exercises
This chapter’s exercises are based on code available from Packt Publishing on GitHub. See

https://github.com/PacktPublishing/Functional-Python-Programming-3rd-Editi

on.

In some cases, the reader will notice that the code provided on GitHub includes partial

solutions to some of the exercises. These serve as hints, allowing the reader to explore

alternative solutions.

https://github.com/PacktPublishing/Functional-Python-Programming-3rd-Edition
https://github.com/PacktPublishing/Functional-Python-Programming-3rd-Edition
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In many cases, exercises will need unit test cases to confirm they actually solve the problem.

These are often identical to the unit test cases already provided in the GitHub repository.

The reader should replace the book’s example function name with their own solution to

confirm that it works.

Reading summary data
In the Filtering and reducing the raw data with a Counter object section, we looked at how

to read raw data and create a useful Counter object with summary counts organized by

shift and defect type.

As an alternative to reading all of the raw data, we can look at processing only the summary

counts. We want to create a Counter object similar to that example; this will have defect

counts as a value, with a key of shift and defect code.

The data will be a CSV file (or a database query result) with three columns: shift, defect

type, and a count. These need to be grouped by a two-tuple of shift and defect type.

Write a defect_summary() function that can work with a source of data and produce the

expected Counter object.

The results of this function will match the detail summary shown previously. The online

repository for this book only has the raw detailed data, so the first step to testing this

function is creating and writing a summary file.

Once this summary data is available as a CSV-formatted file, the function to read the

summaries can be tested.

Revise the probability_by() and summarize_by() functions
In the Computing probabilities from Counter objects section of this chapter, we defined a

function, probability_by(), that evaluated the summarize_by() function directly. There’s

some overlap between the filtering rules used by these functions. Both functions use a

subset_key: Callable[[ShiftDefect], str] function to identify relevant data.

The probability_by() function could be restated as a composition of two functions.
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Instead of directly evaluating the summarize_by() function for each row, define a

probability_by() function that works with the subtotals created by the summarize_by()

function. This means the subtotals must be a parameter to the revised probability_by()

function. It also means the functions using this revised function must be changed to reflect

the new set of parameters.

Fraction vs. float
Throughout this case study, an emphasis was placed on using Fraction objects instead of

float. This leads to extremely precise answers, perhaps more precise than is truly needed.

Rewrite the functions here to use float instead of Fraction objects. How much faster is

the computation? Is this a helpful improvement?

Join our community Discord space
Join our Python Discord workspace to discuss and know more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU
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